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Riccardin C (1) has been synthesized by exploiting an
intramolecular SNAr reaction of ¡-sulfinylfluorobenzene by an
internal phenolate, providing the key 18-membered ring closure
in excellent yield.

Riccardin C (1) represents a class of macrocyclic bisbiben-
zyl natural products, which are phenolic metabolites character-
istic to liverworts.1 The intriguing structure of 1 featuring an
18-membered macrocycle as well as the interesting biological
activities2 stimulated considerable synthetic interests toward this
and related compounds.3

The major synthetic challenge is the construction of the
strained macrocyclic ring including ortho-, meta-, and two para-
substituted benzenes. Upon comparison of five previous syn-
theses of 1 by how the 18-membered ring was constructed
(Figure 1), four syntheses employed intramolecular CC bond
formation at the benzylic positions (bond a or b),3a3d whereas
one relied on biaryl bond formation (bond c).3e The critical
issue, however, is that these macrocyclizations generally suffer
from poor yields, due mostly to the molecular strain within the
macrocycle.

In our recent interest in cyclophanes,4 we became interested
in the synthesis of 1 by exploiting the biaryl ether formation
(bond d in Figure 1) through an intramolecular SNAr reaction,
converting the acyclic starting material I to the strained cyclized
product II (Figure 2). Our hope was that the Meisenheimer
intermediate Awould be less strained by the nonplanar structure
around the ether linkage. The conversion of A to II would
increase the strain, which would, however, be compensated by
the aromatization energy.

Herein, we describe a positive answer to this assumption,
achieving the concise synthesis of 1 via the high-yield SNAr
reaction for the key macrocyclization.5

Scheme 1 shows the retrosynthesis, assuming the cycliza-
tion of seco-precursor 2. The cyclization would hopefully be
achieved by an SNAr reaction of ¡-sulfinylfluorobenzene6

(A-ring) by the internal phenolate (C-ring). The acyclic
precursor 2 would be assembled from four fragments, 36.79

Scheme 2 illustrates preparation of phosphonate 3.18 The
aryllithium species, generated from bromide 7,10 (n-BuLi, THF,
¹78 °C, 1 h) was combined with sulfinate 8,11,12 and removal of
the THP protection afforded alcohol 9 in 87% yield (2 steps).
Mesylation of alcohol 9 followed by the reaction with NaH and
diethyl phosphite gave the desired phosphonate 3 in 78% yield
(2 steps).
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Figure 1. Riccardin C (1) and the disconnectivity.

F
O

O

sp2

F–

OF

sp3

AI II

Figure 2. SNAr cyclization to strained macrocycle.
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Scheme 1. Retrosynthesis.
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Scheme 3 shows the assembly of four fragments.18 Coupling
of alkyne 57 and iodobenzene 68 proceeded smoothly in the
presence of [Pd(PPh3)4] and CuI, and triflation of the resulting
phenol 10 gave triflate 11 in 83% yield. Biarylcarbaldehyde 12,
obtained by the coupling of triflate 11 and boronic acid 4,9 was
subjected to the HornerWadsworthEmmons reaction with
phosphonate 3 to give stilbene 13 in 70% yield in two steps.
Having enyne 13 with the full carbon skeleton of 1, the next
stage needed saturation of the double and triple bonds in 13
while keeping the sulfinyl group intact. After several unsuccess-
ful trials by catalytic hydrogenations,13 the projected conversion
was achieved in excellent yield by diimide reduction.14

Scheme 4 illustrates the end game.18 Pleasingly, the crucial
macrocyclization of 14 was achieved via an intramolecular SNAr
reaction under high-dilution conditions [CsF, CaCO3, MS3A,
DMF (1.0mM), 140 °C, 4 h],15 giving the cyclized product 15 in
92% yield.16 Upon sulfoxidelithium exchange17 of 15 followed
by quenching with MeOH, macrocyclic ether 16 was obtained in
95% yield. Finally, removal of three methyl groups by using
BBr3 afforded riccardin C (1), whose physical data (1H and
13CNMR, IR, and combustion analysis) were fully consistent
with those reported in the literature.1

In summary, a concise synthesis of riccardin C (1) was
achieved by an intramolecular SNAr reaction to form the key
18-membered ring. This strategy would be effective for the
synthesis of other more complex bisbibenzyl natural products.
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Scheme 3. (a) [Pd(PPh3)4], CuI, THF, NEt3, room temp.,
10min; (b) PhNTf2, K2CO3, acetone, room temp., 1 h, 83% (2
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Scheme 2. (a) n-BuLi, THF, ¹78 °C, 1 h; 8, THF, ¹78 °C,
10min; (b) PPTS, EtOH, 65 °C, 3 h, 87% (2 steps); (c)
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